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ABSTRACT

James Ax conjectured that every pseudo algebraically closed field is C1.

We prove this conjecture in characteristic 0 by relating it to degenerations

of Fano varieties.

A field k is called C1 if every homogeneous form f(x0, . . . , xn) ∈ k[x0, . . . , xn]

of degree ≤ n has a nontrivial zero. Examples of C1 fields are finite fields

(Chevalley) and function fields of curves over an algebraically closed field (Tsen).

A field is called PAC (pseudo algebraically closed) if every geometrically in-

tegral k-variety has a k-point. A k-variety X is called geometrically integral if

X ×k k̄ is integral (that is, irreducible and reduced) where k̄ is an algebraic clo-

sure of k. Equivalently, in the terminology of Weil, X is an absolutely irreducible

variety defined over k.

PAC fields were introduced in [Ax68]; see [FJ05] for an exhaustive and up to

date treatment.

The aim of this paper is to prove in characteristic 0 a conjecture of Ax, posed

in [Ax68, Problem 3].

Theorem 1: Every PAC field of characteristic 0 is C1.

[Ax68, Theorem D] proves this for fields whose absolute Galois group is

abelian and [FJ05, 21.3.6(a)] settles the case of fields that contain an alge-

braically closed subfield.

Following an idea of [DJL83], we deduce Theorem 1 from the next result

which holds for all fields of characteristic zero.
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Theorem 2: Let k be a field of characteristic 0 and f1, . . . , fs ∈ k[x0, . . . , xn]

homogeneous polynomials such that
∑

i deg fi ≤ n. Let

X = X(f1, . . . , fs) := (f1 = · · · = fs = 0) ⊂ Pn
k

be the subscheme they define in projective n-space. Then

(1) X contains a geometrically irreducible k-subvariety Y ⊂ X .

(2) If k is PAC then X has a k-point.

If k is PAC, then Y has a k-point which is also a k-point of X , thus (1) implies

(2). The case s = 1 of Theorem 2 (2) is precisely Theorem 1. The more general

version proved here is sometimes called property C′
1.

In order to prove Theorem 2, we represent (a subscheme of) the scheme

X(f1, . . . , fs) as a special fiber of a family Z → P1 over the projective line

whose general fiber is a smooth hypersurface or a complete intersection variety.

The restrictions on the degree are equivalent to assuming that the canonical

class of the general fiber of Z → P1 is negative. This approach raises further

interesting questions about degenerations of Fano varieties, we discuss these in

Question 16.

It is thus sufficient to prove the following more general result.

Theorem 3: Let k be a field of characteristic 0, C a smooth k-curve, Z a

reduced, irreducible, projective k-variety and g: Z → C a morphism. Assume

that the generic fiber Fgen is

(1) smooth,

(2) geometrically irreducible, and

(3) Fano (that is, −KFgen
is ample).

Let c ∈ C be a closed point with residue field k(c). Then the fiber g−1(c)

contains a k(c)-subvariety which is geometrically irreducible. If, in addition,

every k(c)-irreducible component of g−1(c) is smooth (or normal), then g−1(c)

contains a k(c)-irreducible component which is geometrically irreducible.

If Z is smooth and every geometric fiber of g is a simple normal crossing divisor

Definition 7, then by the main theorem of [GHS03], g−1(c) always contains an

irreducible component which has multiplicity 1 in g−1(c). The next example

shows that in general none of these are geometrically irreducible.

Example 4: Let k = Q, C = P1
s:t and in P1

s:t × P2
u:v:w consider the family of

conics

Z := (t(u2 + v2) + sw2 = 0) ⊂ P1
s:t × P2

u:v:w,
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with projection g: Z → C. Set c := (0 : 1). Then g−1(c) is a pair of lines which

are conjugate over Q. The only k(c)-subvariety of g−1(c) which is geometrically

irreducible is the point P := (0 : 1) × (0 : 0 : 1). Note that every geometric

irreducible component of g−1(c) is smooth, but g−1(c) itself is irreducible and

singular.

If we blow up P , we get g′ : Z ′ := BP Z → C with exceptional curve E ⊂ Z ′.

All the assumptions of Theorem 3 are now satisfied, and E ⊂ g′
−1

(c) is the

unique k(c)-irreducible component of g′
−1

(c) which is geometrically irreducible.

By explicit computation, E has multiplicity 2 in g′
−1

(c).

5 Proof of Theorem 3 ⇒ Theorem 2. If deg fi = 1 for every i then X is

a nonempty linear subspace of Pn
k hence geometrically irreducible. In all other

cases s ≤ n − 1.

Let Vi denote the affine space of homogeneous polynomials in k[x0, . . . , xn]

whose degree equals deg fi. As explained in [Har77, Exercise II.8.4], there is a

Zariski open set W ⊂
∏

i Vi such that if (h1, . . . , hs) ∈ W (k̄) then the complete

intersection variety (h1 = · · · = hs = 0) ⊂ Pn is smooth and geometrically

irreducible of dimension n−s ≥ 1. Since k is infinite, we can choose h1, . . . , hs ∈

k[x0, . . . , xn].

Let Z1 ⊂ Pn
k × P1

k be defined by the equations

(uf1 + vh1 = · · · = ufs + vhs = 0) ⊂ Pn
k × P1

k,

where (u : v) are the coordinates on the projective line P1. The fiber

of the projection g1: Z1 → P1 over (0 : 1) is smooth and geometrically irre-

ducible, thus this holds for all points in an open subset of P1. Thus there is a

unique irreducible component Z ⊂ Z1 which dominates C := P1 with projec-

tion g: Z → C. Furthermore, general fibers of g are smooth and geometrically

irreducible. By [Har77, Exercise II.8.4] the canonical sheaf of these fibers is the

restriction of OPn(
∑

deg fi − n − 1), which is negative by assumption. Thus

by Theorem 3, the fiber of g: Z → C over (1 : 0) contains a geometrically

irreducible k-subvariety Y which is also a k-subvariety of X .

The proof of Theorem 3 proceeds in two steps. First we use resolution of

singularities h: Y → Z to reduce to the case g ◦ h: Y → C where every fiber is

a simple normal crossing divisor (see Definition 7).

Then we apply a variant of the Kollár–Shokurov Connectedness Theorem

[Kol92, Theorem 17.4] to a carefully chosen auxiliary Q-divisor D to prove

that every fiber contains a geometrically irreducible component. Connected-
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ness enters through the following elementary observation (cf. [Har77, Remark

III.7.9.1]).

(∗) Let Xk be a smooth variety. Then X is geometrically irreducible iff Xk̄ is

connected.

A further complication is that one of the assumptions of [Kol92, 17.4] is not

satisfied in our case, but this is compensated by other special features of the

current situation. Thus I go through the whole proof in paragraph 9 following

an informal explanation of the Connectedness Theorem. See paragraph 7 for the

definitions and conventions concerning divisors and the associated sequences of

sheaves.

6 Introduction to the Connectedness Theorem. Let Y be a smooth

projective variety over an algebraically closed field k̄ of characteristic 0 such

that −KY is ample. It can happen that there is an effective divisor A such that

(6.1) −A ∼ KY + (ample divisor).

We claim that this implies that SuppA is connected. Indeed, consider the exact

sequence (cf. (7.4))

0 → OY (−A) → OY → OA → 0,

and its associated cohomology sequence

k̄ ∼= H0(Y,OY ) → H0(A,OA) → H1(Y,OY (−A)).

By Kodaira’s vanishing theorem (see, for instance, [GH78, p. 154] or [KM98,

Section 2.5]),

H1(Y,OY (−A)) = H1(Y,OY (KY + (ample divisor))) = 0,

thus we conclude that H0(A,OA) ∼= k̄. This implies that Supp A is connected,

since otherwise we would have sections which are constant on each connected

component of A but not globally constant.

This seems nice, but in practice it rarely gives anything interesting. In order

to get a more useful result, consider the case when we can write

(6.2) B − A ∼ KY + (ample divisor),

where A, B are effective with no common irreducible components. Then, as in

(7.5), B|A is also a Cartier divisor and we get an exact sequence

0 → OY (B − A) → OY (B) → OA(B|A) → 0,
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and its associated exact cohomology sequence

H0(Y,OY (B)) → H0(A,OA(B|A)) → H1(Y,OY (B − A)) = 0,

where the vanishing is again by Kodaira’s theorem. As before, using the

obvious inclusion H0(A,OA) →֒ H0(A,OA(B|A)), we conclude that if

H0(Y,OY (B)) ∼= k̄ then SuppA is connected.

Let us try to apply this to the case s = 1 of Theorem 2. It is very important

that, for the rest of this discussion, all varieties and divisors will be defined over

k, but we apply the Connectedness Theorem over k̄.

Using the notation of paragraph 5, Z ⊂ Pn × P1 is a hypersurface and let

h: Y → Z be a resolution of singularities. Let F0 ⊂ Y be the fiber of g ◦ h over

the point (1 : 0) and assume that h is an isomorphism outside F0 and F0 is a

simple normal crossing divisor Definition 7. Pulling back KZ gives an identity

KY ∼ h∗KZ + E, where E is h-exceptional.

Write E = A − B where A, B are effective with no common irreducible compo-

nents and Supp(A + B) ⊂ SuppF0. We can rearrange the above linear equiva-

lence as

(6.3) B − A ∼ KY + h∗(−KZ).

We aim to apply the previous argument to prove that SuppA is geometrically

connected.

The good news is that B is h-exceptional, thus H0(Y,OY (B)) ∼= k̄ is auto-

matic. (Indeed, any function with poles only along B gives a function on the

normalization of Z with poles in the codimension ≥ 2 set which is the preimage

of h(B), hence constant.)

The bad news is that although −KZ is ample on the fibers of g: Z → P1, it

is not ample on Z. This leads to a technical complication: instead of taking H0

we have to use (g ◦h)∗ and the Kodaira vanishing theorem needs to be replaced

by the vanishing of a certain R1(g ◦ h)∗ (see Theorem 8). A further problem is

that h∗(−KZ) is not even ample on F0, but this again turns out to be a small

difficulty. While these make everything technically harder, the advantage is that

we now care about KY , A, B only in a neighborhood of F0.

Since F0 is a simple normal crossing divisor, every k-irreducible component

of A is smooth. If by accident A is k-irreducible, then A itself is smooth and

geometrically connected, hence geometrically irreducible.
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We have no reason to expect A to be k-irreducible, in fact, A may even be

empty. Thus we try to modify A and B.

Since any two fibers of g ◦ h are linearly equivalent, subtracting a multiple

λF0 from E is like subtracting any other fiber, thus, in a neighborhood of F0,

we still have a linear equivalence

KY ∼ h∗KZ + E − λF0.

Write E − λF0 =
∑

ai(λ)Pi where the ai(λ) are linear functions in λ and the

Pi are distinct k-irreducible divisors. Note that this makes sense for any λ ∈ Q

(and even for λ ∈ R), as long as we use formal linear combinations of divisors

with real or rational coefficients.

There is a unique choice λ0 such that maxi{ai(λ0)} = 1. If λ0 is an integer

then we are dealing with actual divisors, but in general λ0 is rational and we

are inevitably led to Q-divisors. Set

I := {i : ai(λ0) = 1} and J := {i : ai(λ0) 6∈ Z}.

Every rational number can be written uniquely as an integer plus a nonnegative

rational < 1. Correspondingly, we can write

E − λ0F0 = A − B + ∆

where A =
∑

i∈I Pi (all coefficients = 1!), B is an effective divisor with integer

coefficients, Supp A and SuppB have no common irreducible components and

∆ =
∑

j∈J αjQj is a Q-divisor such that 0 < αj < 1 with the Qj distinct.

Note further that

(6.4) B − A ∼ KY + h∗(−KZ) + ∆,

which closely resembles (6.3).

Thus we need to use the generalized Kodaira vanishing theorem (see Theo-

rem 8), which roughly says that the vanishing of H1 still holds for divisors of

the form

KY + (ample divisor) + ∆,

where ∆ is a simple normal crossing divisor with all coefficients between 0 and

1.

We hope to prove that Pi is geometrically connected for each i ∈ I. To see

this, write A′
i :=

∑

j∈I\{i} Pj . We apply our usual argument to

(6.5) B − Pi ∼ KY + (h∗(−KZ) + ǫA′
i) + (∆ + (1 − ǫ)A′

i)
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for some 0 < ǫ ≪ 1.

If L is an ample divisor and D is any divisor then A + ǫD is also ample for

0 < ǫ ≪ 1. Unfortunately, h∗(−KZ) is only semi-ample (that is, the pull back

of an ample divisor) and h∗(−KZ) + ǫA′
i is not even semi-ample.

We have, however, considerable freedom to fiddle with the equation (6.5)

since we can add (or subtract) small multiples of irreducible components of ∆

without changing the assumption that 0 < αi < 1 for every i. This process,

informally known as tie breaking, was introduced in an unpublished preprint

of Reid [Rei83]. The end result is that after careful choices we can write

(6.6) B − Pi ∼ KY + (h∗(−KZ) + ∆1) + ∆2

where h∗(−KZ) + ∆1 is ample on the fibers of g ◦ h and ∆2 is a simple normal

crossing divisor with all coefficients between 0 and 1. Thus we get that Pi is

geometrically irreducible, as required.

Definition 7: Let Y be a smooth k-variety. A prime divisor P is an irreducible

and reduced codimension 1 subvariety. A Q-divisor is a formal linear combina-

tion

(7.1) D =
∑

aiPi where ai ∈ Q,

and the Pi are prime divisors. Note that the Pi are prime divisors over k but

they may have several irreducible components over k̄.

D is called a simple normal crossing divisor if the Pi are smooth and

D ×k k̄ is a divisor with normal crossings as in [Har77, p. 391]. In particular,

(x2+y2 = 0) ⊂ A2
R is not a simple normal crossing divisor but (x2+y2 = 0) ⊂ A2

C

is one.

Write D =
∑

aiPi with the Pi distinct. The support of D is SuppD :=
⋃

i:ai 6=0 Pi. D is called effective if ai ≥ 0 for every i. Set

(7.2) D≥1 :=
∑

i:ai≥1

aiPi.

Note that in characteristic 0

(7.3) (D≥1) ×k k̄ = (D ×k k̄)≥1.

A Q-divisor D is called ample if mD is an ample divisor for some (or all) m > 0

such that mai is an integer for every i.
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Two Q-divisors D1, D2 are called Q-linearly equivalent (denoted by D1∼Q D2)

if there is an integer m > 0 such that mD1 and mD2 are linearly equivalent inte-

gral divisors. (Note that even if the Di are integral divisors, Q-linear equivalence

is slightly different from linear equivalence if Pic(Y ) contains torsion classes.)

Let D =
∑

miPi be an integral divisor. Then OY (D) denotes the sheaf of

rational functions on Y which have a pole of order at most mi along Pi for

mi > 0 and a zero of order at least −mi along Pi if mi < 0. Since Y is smooth,

every integral divisor is Cartier, thus OY (D) coincides with L(D) defined in

[Har77, Section II.6].

If D is effective then for OY (D) we do not require any vanishing, thus we have

an injection OY →֒ OY (D). Dually, for OY (−D) we do not allow any poles,

thus we have an injection OY (−D) →֒ OY . The quotient sheaf is the structure

sheaf of a subscheme which, somewhat sloppily, is also denoted by D [Har77,

Proposition II.6.18]. This gives the basic exact sequence

(7.4) 0 → OY (−D) → OY → OD → 0.

Let E be any integral divisor. We can tensor the above sequence by OY (E).

Since tensoring by a locally free sheaf is exact, we get another exact sequence

(7.5) 0 → OY (E − D) → OY (E) → OY (E) ⊗OD → 0.

Let {φi} be the local defining equations of E as a Cartier divisor. If SuppE does

not contain any of the irreducible components of SuppD, then {φi|D} define a

Cartier divisor E|D and we have an isomorphism

OY (E) ⊗OD
∼= L(E|D) =: OD(E|D).

(Here we used the fact that in a regular local ring R, if f, g ∈ R have no common

irreducible factors then f is not a zero divisor in R/g, cf. [Har77, pp. 184–5].)

Note that in general OD has nilpotents, so L(E|D) needs the scheme theoretic

definition in [Har77, Section II.6] and OD(E|D) is just my notation for the same

sheaf. If E is also effective and SuppE does not contain any of the irreducible

components of SuppD, then E|D is also an effective Cartier divisor, thus we

again have an injection

(7.6) OD →֒ OD(E|D).

The canonical sheaf ωY of Y is defined in [Har77, Section II.8]. Since ωY is

an invertible sheaf on Y , it can be written as ωY
∼= OY (K) for some divisor
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K. The divisor K is not unique, but its linear equivalence class is. This linear

equivalence class is denoted by KY and called the canonical class of Y .

We use the following generalization of the Kodaira vanishing theorem. (See

[KM98, Section 2.5] for a relatively short proof and for further references. Note

that there is a misprint in the relevant Corollary 2.68. In the last line ωY ⊗ M

should be ωY ⊗ L.)

Theorem 8 (Kawamata–Viehweg vanishing): Let Y be a smooth, projective

variety over a field of characteristic 0, W any variety and f : Y → W a morphism.

Let M and ∆ =
∑

aiPi be Q-divisors on Y with the Pi distinct and L an integral

divisor on Y with the following properties:

(1) M is ample;

(2) ∆ is a simple normal crossing divisor and 0 < ai < 1 for every i;

(3) L ∼Q M + ∆.

Then Rif∗(OY (KY + L)) = 0 for i ≥ 1.

I want to stress that even in the special case when the general fiber of f is

a smooth hypersurface (which is all one needs for Theorem 1) the flexibility

provided by Q-divisors is crucial.

Now we can prove the key technical result of this paper.

Theorem 9 (Connectedness theorem): Let Y be an irreducible, smooth, pro-

jective variety over a field of characteristic 0, C a smooth projective curve and

f : Y → C a morphism with geometrically connected fibers. Let D =
∑

aiPi be

a (not necessarily effective) Q-divisor on Y such that

(1) D is a simple normal crossing divisor,

(2) D is f -vertical (that is, its support is contained in the union of finitely

many fibers of f), and

(3) −(KY + D) is ample.

Then every fiber of f : SuppD≥1 → C is geometrically connected.

Proof: The conclusion is geometric by (7.3), thus we may assume that we are

over an algebraically closed field.

Write D = A−B+∆ where A, B have positive integer coefficients and without

common irreducible components, ∆ is effective and if we write ∆ =
∑

aiPi with

the Pi distinct then 0 ≤ ai < 1 for every i. Note that Supp A = SuppD≥1 and

A, B are both f -vertical.
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Claim: Notation as above. Then

(4) if A 6= 0 then f∗OA(B|A) is a quotient of f∗OY (B).

Proof: Consider the exact sequence

0 → OY (B − A) → OY (B) → OA(B|A) → 0,

and apply f∗ to get the exact sequence of coherent sheaves on C

f∗OY (B) → f∗OA(B|A) → R1f∗OY (B − A).

Observe that

B − A = −D + ∆ ∼Q KY + (−(KY + D)) + ∆.

(It is best not to think of the last ∼Q as an equality since KY is not a well-defined

divisor, only a linear equivalence class of divisors.)

By Theorem 8 we conclude that R1f∗OY (B − A) = 0 and so f∗OA(B|A) is

the quotient of the sheaf f∗OY (B).

There are two further key points.

Claim: Notation as above. Then

(5) f∗OY (B) is a rank 1 locally free sheaf on C, and

(6) if A 6= 0 then there is a natural injection f∗OA →֒ f∗OA(B|A).

Proof: As usual, for a sheaf F let F(U) denote its sections over an open set

U , see [Har77, Section II.1]. By definition, for any open U ⊂ C,

(f∗OY (B))(U) = (OY (B))(f−1U).

Since B is vertical, there is a finite set Σ ⊂ C such that B ⊂ f−1(Σ). Thus

if U ⊂ C \ Σ then (f∗OY (B))(U) consists of all regular functions on f−1(U).

Since the fibers of f are geometrically connected and projective, every regular

function is constant on them, thus the regular functions on f−1(U) are the pull

backs of regular functions on U since Y is reduced.

If U ∩ Σ 6= ∅, then, since B is effective, it is still true that the pull backs

of regular functions on U are all in (OY (B))(f−1U), but we may also have

some rational functions which have poles along B. Thus f∗OC ⊂ OY (B) and

OY (B) ⊂ f∗KC where KC denotes the sheaf of all rational functions as in

[Har77, p. 160]. Pushing these forward, we get injections

OC →֒ f∗OY (B) →֒ KC .
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As we saw, OC →֒ f∗OY (B) is an isomorphism over C \ Σ, thus f∗OY (B) is a

torsion free coherent sheaf on C which has rank 1 on a dense open set, hence it

is locally free of rank 1 everywhere. (Indeed, for any smooth curve C, its local

rings Oc,C are principal ideal domains, hence every finitely generated torsion

free Oc,C–module is free. Therefore every torsion free coherent sheaf F on a

connected smooth curve is locally free of rank r for some r ≥ 0. Thus if a

coherent sheaf F has rank 1 on a dense open subset of C then F is a rank 1

locally free sheaf on C.)

By construction B is an effective divisor which has no irreducible components

in common with A, thus B|A is an effective Cartier divisor, which gives an

injection OA →֒ OA(B|A) as in (7.6). Applying f∗ we get another injection

f∗OA →֒ f∗OA(B|A).

Putting together (4), (5) and (6) of the above claims, we see that f∗OA is the

quotient of a subsheaf M of the rank 1 locally free sheaf f∗OY (B). Since C is

a smooth curve, its local rings Oc,C are principal ideal domains, hence M itself

is locally free of rank 1.

Finally, let A(c)1, . . . , A(c)m be those connected components of A which are

contained in f−1(c). We have surjections

M ։ f∗OA ։

m
∑

i=1

H0(A(c)i,OA(c)i
),

which induces a surjection on the fibers over c. Since M is a rank 1 locally

free sheaf, its fiber over c is k. On the other hand, each H0(A(c)i,OA(c)i
)

contains at least the constant sections, thus we get a surjection k ։ kn for

some n ≥ m. This implies that m = n = 1, hence f |A has geometrically

connected fibers.

Corollary 10: Let Y be a smooth, projective variety over a field of char-

acteristic 0, C a smooth curve and f : Y → C a dominant morphism with

geometrically connected simple normal crossing fibers. Let D =
∑

aiPi be a

(not necessarily effective) Q-divisor on Y such that

(1) D is f -vertical and

(2) −(KY + D) is ample.

Then, for every c ∈ C, the fiber Fc contains a k(c)-irreducible component which

is geometrically irreducible.

Proof: Since D is f -vertical, its support is contained in the union of finitely

many fibers of f , which are assumed to be simple normal crossing divisors. Thus
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D itself is a simple normal crossing divisior and all the conditions of Theorem 9

are satisfied.

Given a closed point c ∈ C, let G be any divisor on C which is linearly

equivalent to 0 such that c ∈ SuppG. Note that f∗G is linearly equivalent to

0, thus we can add any rational multiple of f∗G to D without changing the

assumptions of Theorem 9. Write f∗G =
∑

eiPi. Then

D + λf∗G =
∑

(ai + λei)Pi.

Thus if we set

D′ := D + λ0f
∗G where λ0 := min

{1 − ai

ei

: f(Pi) = c
}

,

then we have achieved that

(3) in a neighborhood of Fc, every irreducible component of D′ has coefficient

≤ 1, and

(4) at least one irreducible component of Fc has coefficient 1 in D′.

Let E ⊂ Fc be such a component. We claim that E is geometrically irreducible.

To see this, let m be the multiplicity of E in f∗G and consider

D′′ := D′ − (ǫ/m)f∗G + ǫE for 0 < ǫ ≪ 1.

This choice assures that

(5) in a neighborhood of Fc, every irreducible component of D′′ has coefficient

≤ 1,

(6) there is only one irreducible component E ⊂ Fc which has coefficient 1 in

D′′, and

(7) the Q-divisor −(KY + D′′) ∼Q −(KY + D) − ǫE is ample for 0 < ǫ ≪ 1

since ampleness is an open condition by Kleiman’s criterion [Kl366, p. 325,

Theorem 1].

Thus in a neighborhood of Fc, E = D′′
≥1 and so, by Theorem 9, E is geomet-

rically connected. Since E is smooth by assumption it is also geometrically

irreducible.

Remark 11: The assumption in Corollary 10 (1) can be relaxed considerably.

The proof works without changes if Corollary 10 (1) is replaced by the following

three conditions:

(1.i) D≥1 is f -vertical,

(1.ii) SuppD + (any fiber of f) has simple normal crossings, and
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(1.iii) H0(Fgen,OFgen
(D∗) is 1-dimensional over k(C), where

D∗ := −
∑

i:ai<0

[ai]Pi

and Fgen is the generic fiber of f . (Here [b] denotes the integral part of a

number b.)

This more general case is useful since it can be used to prove that Theorem 3

holds even when the generic fiber is a Q-Fano variety.

We need a further technical lemma.

Lemma 12: Notation and assumptions as in Theorem 3. Then there is a closed

subvariety V ⊂ PN × C with projection π : V → C, an ample divisor L on

PN × C and an open subset C0 ⊂ C such that

(1) V 0 := π−1(C0) ∼= g−1(C0) and

(2) −mKV 0 ∼ L|V 0 for some m > 0.

Proof: I first explain the proof for Z as constructed in Paragraph 5. In this

case we can take V := Z, π := g and N = n. Let πC , πP be the the coordinate

projections of PN ×C and H a hyperplane on PN . Set Hi := (ufi + vhi = 0) ⊂

Pn × P1. By generic smoothness (cf. [Har77, Section III.10.7]), there is an open

subset C0 ⊂ C = P1 such that

(3) the projections H1∩· · ·∩Hj → P1 are smooth over C0 with fiber dimension

N − j for j = 1, . . . , s.

Repeatedly applying the adjunction formula [Har77, Section II.8.20], we ob-

tain that
−KV 0 ∼ ((N + 1)π∗

P H −
∑

Hi)|V 0

∼ (N + 1 −
∑

deg fi)(π
∗
P H)|V 0 .

Let B be any effective divisor whose support is contained in C \C0. Since B is

ample on C and (N + 1 −
∑

deg fi)H is ample on PN , we conclude that L :=

π∗
CB+(N +1−

∑

deg fi)π
∗
P H is ample on PN ×C (cf. [Har77, Exercise II.5.11].)

By construction, −KV 0 ∼ L|V 0 .

The general case is very similar. We can choose an open subset C0 ⊂ C such

that the fibers Fc of g over C0 are all smooth, −mKFc
is very ample for some

m > 0 and (g∗OZ(−mKZ))|C0 is free of rank N +1 for some N . This defines an

embedding g−1(C0) →֒ PN × C0. Let V ⊂ PN × C be the closure of its image.

We take L := π∗
CB + π∗

P H , then −mKV 0 ∼ L|V 0 .
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13 Proof of Theorem 3. Notation as above. We can apply Hironaka’s the-

orem on resolution of singularities [Hir64, p. 132, Theorem 1] to get h1: V1 → V

such that V1 is smooth and the isomorphism π−1(C0) ∼= g−1(C0) lifts to a

morphism φ1: V1 → Z [Hir64, p. 144, Paragraph 1].

Let F sing ⊂ V1 be the union of all singular fibers of π ◦ h1. Applying Hi-

ronaka’s theorem on resolution of subschemes [Hir64, p. 146, Corollary 3] to

F sing ⊂ V1 we get h2: V2 → V1 and h := h1 ◦ h2: V2 → V such that every fiber

of π ◦ h: V2 → C is a simple normal crossing divisor. In particular, for every

c ∈ C, every k(c)-irreducible component of the reduced fiber redFc is smooth.

Throughout these resolutions we do not blow up anything above C0.

Since h: V2 → V is a composite of blow ups of subvarieties, there is an m2 > 0

and an h-exceptional divisor E such that m2h
∗(L|V ) − E is ample on V2 (cf.

[Har77, Propositions II.7.10.b and II.7.13]). Dividing by m · m2 we conclude

that there is an ample Q-divisor M on V2 such that

−KV2
|V 0 ∼Q M |V 0 .

Thus there is a Q-divisor D supported in V2 \ V 0 such that

−(KV2
+ D) ∼Q M.

Since the support of D is contained in a union of fibers of π ◦ h, it is a simple

normal crossing divisor. Thus D is vertical and the Corollary 10 (1) and (2)

hold.

Hence by Corollary 10, every fiber of π ◦ h: V2 → C contains a geometrically

irreducible component.

Since every fiber of g: Z → C is dominated by a fiber of π ◦ h: V2 → C,

we conclude that every fiber of g: Z → C contains a geometrically irreducible

subvariety.

Finally, assume that every k(c)-irreducible component of g−1(c) is smooth

(or normal). Let W ⊂ g−1(c) be a geometrically irreducible subvariety and

F ⊂ g−1(c) an irreducible component containing W . Write F ×k(c) k̄ =

F1 + · · · + Fm where the Fi are irreducible over k̄. One of the Fi contains

Wk̄, but then so do all the others since the Fi are conjugate over k. Since

F ×k(c) k̄ is normal, this implies that m = 1 and F is geometrically irreducible

over k(c).

Theorem 3 naturally raises the following question:
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Question 14: Which “natural” classes of schemes S satisfy the following prop-

erty

(∗)
For every field k and for every k-scheme S ∈ S,

S contains a geometrically irreducible subscheme.

We have shown that (∗) holds for

S = {degenerations of Fano varieties}.

There are two immediate generalizations, but (∗) fails for both. First, degen-

erations of Fano varieties are all rationally chain connected, that is, any two

k̄-points can be connected by a chain of rational curves over k̄. (See [Kol96,

Chapter IV] for a general overview.)

The triangle (xyz = 0) ⊂ P2 is rationally chain connected. Let K/Q be any

cubic extension with norm form N(x, y, z). Then CN := (N(x, y, z) = 0) has

no geometrically irreducible Q-subvarieties but it is isomorphic to the triangle

over Q̄.

One can also try to work with singular Fano schemes. That is, schemes X

such that ωX is a line bundle such that ω−1
X is ample. Here (∗) again fails.

Take the affine variety (N(x, y, z)+x4+y4+z4 = 0) ⊂ A3. Blow up the origin

to get Y . The exceptional curve is isomorphic to CN , let I be its ideal sheaf.

Then X = SpecY OY /I2 is a Fano scheme with no geometrically irreducible

Q-subvarieties.

I have, however, no counterexamples to the following questions:

Question 15: Does (∗) hold for the following two classes of schemes:

(1) Degenerations of smooth rationally connected varieties.

(2) Reduced Fano schemes.

The recent preprint [Sta06] proves (1) in case k contains an algebraically

closed field.

In fact, in both cases it may be true that such a scheme contains a geometri-

cally irreducible component which is also rationally connected:

Question 16: Let k be a field of characteristic 0, C a smooth k-curve, Z a

smooth k-variety and g: Z → C a projective morphism. Assume that

(1) the generic fiber Fgen is rationally connected,

(2) every fiber is a simple normal crossing divisor (in particular, every k(c)-

irreducible component of g−1(c) is smooth).

Is it true that every fiber g−1(c) contains a k(c)-irreducible component which is

rationally connected (and hence geometrically irreducible)?
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Remark 17 (Positive characteristic): The conjecture of Ax needs only minor

modifications in positive characteristic, see [FJ05, Chapter 21].

It is known that for any prime p, the following are equivalent:

(1) Fp(t) is weakly C1.

(2) Every field of characteristic p is weakly C1.

(3) Every perfect PAC field of characteristic p is C1.

This is still not known but, as Jarden pointed out, Theorem 1 implies that for

any fixed n there is a p(n) such that if K is a perfect PAC field of characteristic

p ≥ p(n) and f(x0, . . . , xn) is homogeneous of degree ≤ n then it has a nontrivial

zero in K.

Note also that every perfect PAC field of characteristic p is C2 [FJ05, Theorem

21.3.6(b)].

The proof in this note has difficulties in positive characteristic. First, res-

olution of singularities is not known (but it is expected to be true). Second,

Kodaira’s vanishing theorem and its generalization (8) are false in positive char-

acteristic. As far as I know, however, all versions of the Kollár–Shokurov Con-

nectedness Theorem may hold in positive characteristic.

Acknowledgements: I thank A. J. de Jong, H. Esnault, M. Jarden, J. McK-
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Added in proof. Question 16 has been solved in Amit Hogadi and Chenyang

Xu, Degenerations of Rationally Connected Varieties, 2006, math.AG/0606666.
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